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ABSTRACT

This research	 project	 has	 the	 objective	 to	 extend	 the	 range	 of	 application,	
improve	 the	 efficiency	 and	 conduct	 simulations	 with	 the	 Fast	 Lubrication	
Dynamics	(FLD)	algorithm	for	concentrated particle	suspensions	in	a	Newtonian	
fluid	 solvent.	 	 The	 research	 involves	 a	 combination	 of	 mathematical	
development,	 new	 computational	 algorithms,	 and	 application	 to	 processing	
flows	 of	 relevance	 in	 materials	 processing.	 	 The	 mathematical	 developments	
clarify	the	underlying	theory,	facilitate	verification	against	classic	monographs	in	
the	 field	 and	 provide	 the	 framework	 for	 a	 novel	 parallel	 implementation	
optimized	for	an	OpenMP	shared	memory	environment.		The	project	considered	
application	to	consolidation	flows	of	major	interest	in	high	throughput	materials	
processing	 and	 identified	 hitherto	 unforeseen	 challenges	 in	 the	 use	 of	 FLD	 in	
these	applications.		Extensions	to	the	algorithm	have	been	developed	to	improve	
its	accuracy	in	these	applications.

SAND2014-20643R
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INTRODUCTION

Fast	Lubrication	Dynamics	(FLD)
1.	 Governing	Equation

The	movement	of	colloidal	particles	suspended	in	a	Newtonian	fluid	is	described	
by	the	Langevin	equation

where	 m	 is	 the	 particle	 mass,	 U	 is	 particle	 velocity,	 and	 FH,	 FB,	 FP	 are	 the	
generalized	force	vectors	due	to	hydrodynamic	interactions,	Brownian	motions,	
and	interparticle	interactions	respectively.	Each	of	the	velocity	and	force	vectors	
comprises	of	a	liner	and	a	angular	component	resulting	a	length	of	6Np,	where	Np	

is	 the	number	particles	 in	 the	 system.	The	 inertia	of	 the	particles	 in	 the	above	
equation	is	usually	negligible	and	is	usually	taken	to	be	zero	 in	our	simulations	
and	therefore	we	may	simplify	our	governing	equation	to

In	 the	 following	 sections	 we	 will	 describe	 in	 detail	 the	 calculations	 of	 each	
force,i.e.
F	H,	F	B,	F	P	,	and	the	method	of	solution	in	solving	our	governing	equation.

2.		Hydrodynamic	Interactions

The	hydrodynamic	 force	FH,	 torque	TH,	 and	 stresslet	 SH exerted	by	 the	 fluid	on	
the	colloidal	particles	can	be	described	by	a	linear	function	expressed	in	the	form	
of	a	resistance	tensor	R.

																																																																																																																																																	

where	u and	ω are	the	velocity/angular	velocity	of	the	particles	respectively	and	
E∞ is	the	rate	of	strain.	The resistance	tensor	is	comprised	of	second	rank	tensors
A,	B,	B˜	and	C,	third	rank	tensors	�,��, �, �� and	a	fourth	rank	tensor	M.

(2.1)
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In the	FLD	method,	the	resistance	tensor	R	is	expressed	as	a	sum	of	an	isotropic	
resistance	 tensor	 and	 a pairwise	 lubrication	 resistance	 tensor	 as	 seen	 in	
equation	

The formulation	of	RISO	and	RLUB	as	well	as	 the	sub-block	resistance	tensors	will	
be	described	below.

2.1 Isotropic	Resistance	Tensor

The	isotropic	resistance	tensor	is	described	by

The	 terms	R0FU ,	R0TΩ,	R0SE	used	 in	FLD	are	 chosen	 to	match	 the	short-time	self-
diffusivity	Ds	of	a	hard	 sphere	 calculated	using	Stokesian	dynamics	 (SD).	 In	our	
method,	 these	 terms	 depend	 solely	 on	 volume	 fraction	 and	 are	 given	 by	 the	
following	equations
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2.2 Lubrication	Resistance	Tensor

2.2.1 Full	Resistance	Tensor

In	 this	 section,	 we	 will	 formulate	 the	 lubrication	 resistance	 tensor	 using	
notations	given	by	Kim.	We	begin	by	noting	that	 the	 lubrication	matrix	has	the	
same	 form	 as	 equation	 (1.2)	 and	 to	 avoid	 confusion	 between	 the	 overall	
resistance	 tensor	 and	 lubrication	 resistance	 tensor	 we	 will	 apply	 the	 ”LUB”	
subscript when	referring	to	the	lubrication	contributions

Combining	 equation	 (1.1)	 and	 (1.8)	we	 can	 describe	 the	 resistance	matrix	 and	
lubrication	FH,	TH,	and	SH	as

By	considering	only	 the	 terms	of	O(a/δ+ln(a/δ))	 in	 the	 lubrication	 interactions	
we	acquire	the	following	relations	(see	Appendix	A	for	proofs)

where

The	above	relations	imply	that	U∞(x),	Ω∞,	and	E∞	provide	no	contribution	to	the	
lubrication	forces	or	torque	and	we	may	simply	equation	(2.9)	to
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This	 equation	 may	 be	 further	 simplified	 calculating	 the	 stresslet	 in	 a	 post
processing	step	.	Equation	(1.10)	becomes

The	 lubrication	 submatrices	A,	B,	B˜,	 and	C	can	 be	 defined	 in	 terms	 of	 smaller	
submatrices	Aαβ, Bαβ, B˜

αβ,	 and	Cαβ	describing	 the	 interactions	between	 a	pair	of	
particles	α	and	β.	For	α≠	 β	the	submatrices	describe	the	effect	of	particle	α	on	
particles	β.	For	α	=	β	(i.e.	the	diagonal	terms)	the	submatrices	describe	the	effect	
of	 particle	 α	on	 itself	 due	 to	 its	 interaction	 with	 all	 other	 particles.	 In	 other	
words,	the	diagonal	terms	represent	a	sum	of	all	pair	interactions	on	particle	α	
as	described	by	equation	(1.20)	- (1.23).	The	following	example	 illustrates	how	
the	submatrices	fit	into	the	larger	lubrication	matrices.	

We	 will	 now	 describe	 in	 detail	 how	 the	 submatrices	 are	 formulated	 by	 first	
introducing	the	following	notations:

Next,	 we	 define	 the	 scalar	 resistance	 functions	 using	 the	 lubrication	
approximations	 given	 by	 Kim	 (pg.	 279,	 pg.	 283).	 We	 evaluate	 Kim’s	 general	
expressions	using	β=1	in	Kim’s	notation	for	equal	sized	particles	and	find
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It	is	important	to	note	that	the	above	lubrication	approximations	XA,	YA,	YB,	and	
YC	become	 0	 when	 r	 <	 rLUB,	 where	 rLUB	is	 the	 cutoff	 range	 for	 the	 lubrication	
interaction	between	two	particles.	With	this	definition,	the	submatrices	A,B,	B˜,	C	
become	sparse	matrices	and	the	 importance	of	sparsity	will	be	discussed	in	the	
next	section.	We	define	three	additional	notations	D, I,	and	E	which	will	be	used	
in	 conjunction	 with	 the	 scalar	 resistance	 functions	 to	 form	 the	 lubrication	
submatrices.

With	the	definitions	above,	the	lubrication	submatrices	are	formulated	as	follows
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where	Np	is	the	number	of	particles.

The	 bold	 upper	 case	A,	B,	B˜,	 and	 C	on	 the	 LHS	 represent	 the	 full	 lubrication	
resistance	submatrices.	The	scripted	upper	case	A,	B,	B˜,	C	on	the	RHS	represent	
a	 single	 pairwaise	 lubrication	 contribution	 which	 can	 be	 written	 in	 terms	 of	
scalars	XA,	YA,	and	YB	and	matrices	D,	I,	and	E	defined	by	equations	(2.16	- 2.22).

Note	that	due	to	our	definition	of	E	in	equation	(1.22),	 the	sign	of	 the	matrix	E	
will	change	depending	on	the	direction	of	the	unit	vector	d	such	that	Eαβ	=	−Eαβ

We	will	now	redefine	velocity	and	angular	velocity	as	absolute	velocity,	u0,	and	
angular	 velocity,	 ω0.	 We	 do	 so	 by	 expanding	 equation	 (2.21)	 and	 applying	
periodic
shift

where
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where	L	is	the	system	size.	The	absolute	velocity	and	angular	velocity	are	defined	
as
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DETAILED DESCRIPTION OF METHOD

.2.2 Pairwise	Resistance	Tensor

In	the	Introduction	above,	we	denoted	rLUB	as	the	cutoff	range	for	the	lubrication	
interactions	between	two	particles.	That	is,	the	lubrication	force	applies	to	a	pair	
of	 particles	 only	 if	 they	 have	 a	 interparticle	 separation	 of	 r	 <	 rLUB.	 With	 this	
definition,	 RLUB	becomes	 a	 sparse	 matrix.	 Here	 we	 will	 devise	 a	 new	 storing	
scheme	 that	 takes	 advantage	 of	 the	 pairwise	 interactions	 and	 the	 sparsity	 of	
RLUB.
We	begin	by	introducing	a	set	of	pairwise	parameters	that	are	analogous	to	the	
scalar	 resistance	 functions	 in	 equations	 (1.16)	 - (1.19)	 and	 the	 resistance	
submatrices	in	equations	(1.28)	- (1.31).

Using	these	equations,	we	may	write	RLUB	in	a	pairwise	fashion	and	store	them	in	
a	 newly	 defined	 pairwise	 resistance	 tensor	RPW	of	 size	6Npair	×	 6,	where	Npair	is	
the	total	number	of	near	neighbor	pairs	with	r	<	rLUB.	The	tensor	RPW	will	aid	us	
in	calculating	the	hydrodynamic	lubrication	forces	and	torques	in	the	following
section.

2.2.3 Force	Calculation

Here,	 we	 will	 provide	 two	 different	 methods	 in	 calculating	 the	 hydrodynamic	
lubrication	 forces	and	torques:	one	using	the	 full	resistance	tensor	constructed	
with	Kim’s	 notation	 and	one	 using	 the	pairwise	 resistance	 tensor	 described	 in	
section	1.2.2.	By	 the	end	of	 the	 section,	we	will	demonstrate	 that	our	pairwise	
technique	 returns	 the	 same	 result	 as	 Kim’s	 method	 while	 providing	 a	 more	
efficient	 approach	 in	 dealing	 with	 large	 scale	 systems.	 For	 simplicity,	 we	 will	
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analyze	both	methods	using	a	case	where	only	a	pair	of	particles	α	and	β	exist	in	
the	system.

With Kim’s	 method,	 we	 formulate	 the	 resistance	 tensor	 following	 the	 steps	
detailed	 in	 section	 1.2.1	 and	 substitute	 it	 into	 equation	 (1.11)	 to	 form	 the	
following

where	uα,	uβ,	ωα,	ωβ	are	the	velocities	and	the	angular	velocities	of	particles	α	and	
β.	

With	the	definitions	in	equations	(1.16)	- (1.19)	and	equations	(1.23)	(1.26),	we	
rewrite	the	above	expression	as

To	 solve	 for	 the	 lubrication	 forces	 and	 torques,	matrix-vector	multiplication	 is	
performed	 using	 packages	 such	 as	 LAPACK.	 For	 a	 large	 scale	 system,	 the	
formulation	of	the	full	6NP	×	6NP	resistance	tensor	is	required	with	this	method.	
This	proves	to	be	inefficient	since	the	resistance	tensor	is	mostly	sparse.
For	the	pairwise	method,	two	new	parameters	udiff	and	ωdiff	are	defined

The	vectors	udiff	and	ωdiff	are	the	velocity	difference	in	shearing	and	rolling	at	the	
surface	of	the	particles.		We	then	substitute	udiff,	ωdiff	and	the	pairwise	resistance	
tensor	 RPW	into	 equation	 (1.11)	 to	 derive	 our	 expressions	 for	 calculating	 the	
lubrication	forces	and torques	in	a	pairwise	fashion.
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Next,	 expand	 equations	 (1.42)	 and	 (1.43)	 and	 collect	 terms	 to	 obtain	 the	
following

By	comparing	equation	(1.44)	with	equation	(1.39),	we	can	demonstrate	that	our	
pairwise	scalar	resistance	functions	are	analogous	to	the	scalar	resistance	used	
by	Kim	as	seen	in	equations	(1.45)-(1.49).

Using	our	pairwise	method,	we	may	calculate the	lubrication	forces	and	torques	
using	only	the	pairwise	tensors	for	each	pair	instead	of	the	full	resistance	tensor	
and	 the	 total	 lubrication	 forces	 and	 torques	 may	 be	 obtained	 by	 summing	 up	
each	pairwise	contributions.

(2.54)
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3.		Brownian	Force

The	Brownian	 forces	 and	 torques	 are	 obtained	 from	 the	 following	 expressions	
which	satisfy	the	fluctuation	dissipation	theorem

Since	RFLD	=	RISO	+	RLUB,	we	may	 express	 the	 brownian	 forces	 and	 torques	 as	a	
sum	of	isotropic	and	lubrication	contributions

The	Brownian	isotropic	contributions	can	be	written	as

The	 Brownian	 lubrication	 contributions	 are	 calculated	 in	 a	 pairwise	 fashion	
similar	to	the	method	described	in	section	1.2.3.



13

Note	that	the	Ψ	in	equations	(3.7)	and	(3.8)	are	the	same	vector.	The	vectors	Φ	
and	Ψ	are	uncorrelated	random	numbers	with	zero	mean	and	unit	variance	such
that

With	expressions	for	Brownian	forces	and	torques	defined,	we	proceed	to	set	up	
the	J	and	K	matrices.	The	matrix	J	is	trivially	written	as

The	matrix	K	is	constructed using	the	pairwise	parameters	defined	by	equations
(1.31)	- (1.36).	First,	let	NPair	be	the	number	of	pairs	of	particles	with	interparticle	
separation	of	r	<	rLUB.	We	then	designate	vectors	γ1	and	γ2	to	store	the	indices	of	

the	particles	in	each	pair	such	that	pair	p	consists	of	particles and	 .	Next,	the	
matrix	K	is	defined	in	terms	of	smaller	6	×	6	submatrices.
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The	submatrices	K,													and	KC
αp	describe	the	lubrication	contribution of	pair	p	

to	the	Brownian	force	and	torque	exerted	on	particle	α	and	are	written	as

			

where	KA,	KB,	and	KC	are	the	block	Cholesky	of	the	pairwise	submatrices	in
equations	 (1.34)-(1.36)	 written	 in	 terms	 of	 the	 pairwise	 scalar	 resistance	
functions.
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As	 an	 important	 reminder,	we	note	 that	due	 to	our	definition	of	E	 in	equation	
(1.22),	� = ������ 		the	sign	of	E	changes	with	respect	to	the	indices	of	the	pair

such	that			 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .With	the	submatrices	defined,	the	full	K	matrix	is	
written	as

Similar	 to	how	we	computed	the	hydrodynamic	 lubrication	 forces	and	torques,	
we	 may	 sum	 up	 each	 pairwise	 contributions	 to	 acquire	 the	 total	 Brownian	
lubrication	forces	and	torques	instead	of	using	the	full K	matrix.
Npair
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4.		Overlap	Correaction

The	overlap	correction	algorithm	removes	the	overlaps	between	particles	after	
each	 Runge	 Kutta	 time	 step	 without	 jeopardizing	 the	 physics	 that	 the	 main	
algorithm	is	trying	to	capture.	The	algorithm	is	described	below.

		1)	Determine	the	minimum	interparticle	separation

			where	x∗ is	the	position	of	the	particles	at	the	end	of	RungeKutta

		2)	If	rmin	≥	2a,	go	to	step	10.

		3)	 Calculate	 the	 largest	 gap,	δOC,	 for	which	 hydrodynamic	 interactions	will	 be	
applied

		4)		Calculate	the	minimum	numerical	gap,	δNUM,OC,	for	evaluating	hydrodynamics									
interactions

		5)		Calculate	forces	on	particles	with	overlaps	using	arbitrary	time	step	∆tOC

The	force	moves	the	overlapped	particles	apart	to	a	distance	that	is	equal	to	the	
size	 of	 the	 overlap.	 The	 1.01	 factor	moves	 the	 particles	 an	 additional	distance	
that	is	1%	of	the	size	of	the	overlap.
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6)		Calculate	R0,OC	and

		7)		Calculate	velocity

8)	Calculate	new	positions

9)		Go	to	Step	1

10)		Calculate	final	position

4.0.4 Additional	Notes
The	 algorithm	 for	 overlap	 correction	 assembles	 a	 resistance	 tensor	 using	 the	
same	algorithm	from	the	main	code	with	following	modification	in	the	variables	
used:

1)	use	Ro,OC	instead	of	Ro

2)		use	δNUM,OC	instead	of	δNUM

3)		use	δOC	for	hydrodynamic	cutoff	instead	of	rLUB

The	isotropic	resistance,	ROC,	calculated	in	equation	(4.5) is	intended	to	serve	as	
safety	net	in	the	construction	of	the	resistance	tensor	to	prevent	dividing	by	zero	
for	 the	 δ	 ≥	 δOC	case	 and	 does	 not	 have	 any	 significant	 contribution	 to	 the	
resistance	tensor	itself.	Using	the	resistance	tensor	and	the	force	calculated	from	
equation	(4.4),	we	can	solve	for	the	velocity	to	remove	the	overlaps	in	the	system
simultaneously.
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In	 the	 case	 where	 only	 a	 pair	 of	 particles	 overlap	 without	 any	 near	 neighbor	
contribution,	 the	 overlap	 should	 be	 resolved	 in	 a	 single	 step	 as	 demonstrated	
below:

becomes

Since	the	isotropic	term	has	essentially	no	contribution	to	the	resistance	tensor	
we	can	effectively	reduce	the	equation	to
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RESULTS

The	main	thrusts of	this	project	have	been	

1. the	 refinement	 of	 the	 theoretical	 underpinnings	 of	 the	 Fast	 Lubrication	
Dynamics	algorithm,	

2. tests	 for	 different	 strategies	 for	 fast	 preconditioners	 for	 improved	
convergence	 of	 the	GMRES	 linear	 solves	 in	 the	 implicit	 form	of	 the	 FLD	
algorithm

3. algorithm	reformulation	in	terms	of	pairwise	interaction	loops	in	place	of	
direct	particle	summation	loops	to	optimize	the	algorithm	for	OpenMP	on	
shared	memory	multicore/multiprocessor	workstations

In	thrust	(1), we	 introduced	changes	 in	the	analytical	development	 to	 facilitate	
simpler	 cross-verification	among	 the	 formulations	of	Kim	and	Karrila,	Ball	 and	
Melrose	and	existing	 Sandia	LAMMPS	 (Large-Scale	Atomic	Molecular	Massively	
Parallel	 Simulator)	 library	 routines	 provided	 by	 Amit	 Kumar	 in	 our	 group	 at	
UIUC.		 The	major	results	are	presented	in	the	Detailed	Description	section	of	the	
report	above.	 	 In	particular,	 there are	three	areas	where	 the	FLD	approach	has	
been	 refined	 and	documented	 in	 these	pages.	 	First,	we	have	 for	 the	 first	 time	
given	 concise	 expressions	 for	 the	 general	 resistance	 tensor	 submatrices	 in	 a	
pairwise	 interaction	 format	 (eqs	 2.41	 through	 2.58	 above)	which	 facilitate	 the	
rewriting	of	the	algorithm	in	a	pairwise	loop	formulation.	 	We	have	derived	the	
equivalence	 relations	 between	 these	 submatrices	 and	 the	 global	 particle	
formulation	used	 in	Kim’s	monograph	allowing	easy	verification	with	 standard	
published	 sources.	 	 Second,	 we	 have	 reformulated	 the	 Brownian	 force	
computation	 (eqs	 3.1	 through	 3.25)	 above	 utilizing	 a	 consistent	 tensor	
formulation.	 	 Previous	 versions	 of	 the	 Brownian	 force	 algorithm	 both	 in	 our	
group	 (Kumar	 and	 LAMMP	 library	 routine)	 and	 in	 the	 early	 Ball	 and	 Melrose	
paper	used	a	somewhat		ad	hoc	formulation	which	required	the	use	of	a	random	
initial	vector	to	generate	a	local	orthogonal	triad	in	computing	Brownian	forces	
and	 torques.	 	 Third	 we	 introduced	 an	 improved	 overlap	 correction	 algorithm	
(eqs	4.1	through	4.14)	which	yields	fewer	repeat	overlaps	and	larger	time	steps	
in	Brownian	simulations	at	low	Peclet	number	and	high	volume	fraction.

In	 thrust	 (2),	 we	 tried	 numerous	 different	 approaches	 including	 right	 handed,	
left	 handed	 and	 symmetric	 preconditioners	 (as	 discussed	 in	 the	 Saad	
monograph)	with	different	 choices	 for	 the	preconditioner	matrix.	 	Basically	we	
explored	 different	 combinations	 of	 sparse	 pairwise	 incomplete	 LU	
preconditioners	 as	 well	 as	 approaches	 including	 the	 next	 nearest	 neighbor	
contributions.	 	 Ultimately,	 despite	 exhaustive	 testing,	 this	 proved	 to	 be	 an	
unsuccessful	research	thrust.		We	concluded	that	the	block	diagonal,	incomplete	
LU	based	on	pairwise	contributions	which	we	had	previously	developed	proved	
the	 best	 choice. The	 block	 diagonal	 preconditioners	 showed	 best	 overall	
efficiency,	 and	 a	 new	higher	 order	 block	 form	was	 utilized	 to	 maintain	 better	
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consistency	 with	 the	 system	 matrix.	 	 Simulations	 continued	 to	 affirm	 the	
superior	performance	of	the	implicit	solver	vs	explicit	solver.

In	 thrust	 (3),	 we	 restructured	 the	 main	 computational	 loops	 in	 the	 code	 to	
improve	 efficiency	 and	 to	 better	 exploit	 the	 sparse	 matrix	 structure.	 	 This	
facilitates	 smaller	storage	and	data	transfer	 for	distributed	processing	and	also	
paves	the	way	for	possible	future	tests	on	GPU	assisted	computations.	

Improved	Parallel	Structure	for	OpenMP	on	Shared	Memory	Workstations.		The	
previous	 algorithm	 was	 based	 on	 loop	 structures	 over	 the	 global	 particle	
number,	suitable	for	serial	computation	or	for	massively	parallel	systems	where	
memory	 bandwidth	 and	 latency	were	 of	 prime	 concern.	 	 Some	 redundancy	 in	
computation	was	 acceptable	 to	minimize	 these	more	 serious	 bottlenecks.	 	 For	
OpenMP,	 computations	 for	 all	 lubrication	 terms	 were	 performed	 in	 loops	
summing	on	 the	 global	near	neighbor	count.	 	The	precomputed	data	 structures	
were	then	accessed	 in	 loops	summing	over	global	particle	number.	 	This	hybrid	
computation	 allowed	 efficient	 use	 of	 OpenMP	 data	 typing	 and	 prevents	 data	
races	and	collisions	and	optimizes	gather/scatter	computations.	 	This	approach	
has	been	 implemented	and	verified.	Performance	profiling	was	conducted	both	
on	older	chipsets	(Intel	Q6600	quad,	Xeon	E5410	dual	quad)	and	newer	chipsets	
(I7-3770	quad,	Xeon	E5-1650	hex).		We	found	that code	revision	was	required	to	
fully	exploit	the	increased	memory	bandwidth	and	hyper-threading	of	the	latest	
chipsets. The	algorithm	restructuring	and	refinement	also	included	introduction	
of	the	higher	order	(log	δ)	hydrodynamic	lubrication	interactions.

Overall,	 we	 found	 the	 new	 hybrid	 loop	 structure	 performed	 at	 the	 highest	
efficiency	with	up	to	80%	utilization	when	running	on	8	processors.		Additional	
OpenMP	 testing	on	new	12	and	16	core	workstation	architectures	 is	desirable.		
We	 found	 that	 the	 improved	 performance	 of	 the	 hybrid	 loops	 structure	
depended	 on	 the	 improved	 memory	 bandwidth	 of	 modern	 processors.	 	 Older	
processors	such	as	the	Q6600	quad	chip	lacked	sufficient	bandwidth	to	show	any	
improvement.	 	 Fortunately	 all	 modern	 Core2	 and	 later	 architectures	 showed	
significant	 performance	 improvements	 for	 the	 new	 hybrid	 loops,	 and	 Xeon	
processors	 commonly	 used	 in	 workstations	 always	 have	 sufficient	 memory	
bandwidth.
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DISCUSSION

Overall,	thrusts	(1)	and	(3)	above	proved	quite	successful,	while	 thrust (2)	was	
unable	 to	 improve	 on	 the	 already	 efficient	 approach	 of	 our	 existing	
preconditioners.	 	 We	 were	 pleased	 with	 the	 results	 of	 these	 efforts.	 	 In	 the	
original	 scope	 of	 this	 project,	 after	 completing	 the	 theoretical	 work	 and	
algorithm	 development,	 we	 had	 hoped	 to	 complete	 a	 series	 of	 simulations	 on	
consolidation	flows	to	examine	how	the	particle	distribution,	microstructure	and	
heterogeneities	in	the	stress	distribution	were	affected	by	processing	conditions.		
The	 desired	 parametric	 considerations	 include	 rate	 of	 compression,	 Peclet	
number,	 interparticle	 forces	 (both	 attraction	 and	 compression)	 and	 degree	 of	
compression	indicated	by	phi_initial/phi_final.			This	remains	an	important	area	
for	 continued	 research.	 	 In	 our	 research	 group,	 Bybee	 conducted	 an	 extensive	
system	 of	 simulations	 on	 gelation	 in	 dense	 colloidal	 systems	 with	 both	 short	
attractive	and	 long	range	 repulsive	 interparticle	 forces.	 	 	The	gelation	occurred	
under	 quiescent	 conditions.	 	 Bybee	 showed	 that	 the	 relative	 strengths	 of	 the	
attractive	 and	 repulsive	 forces	 had	 a	 profound	 effect	 on	 the	 properties	 of	 the	
final	 gel	 in	 terms	 of	 number	 of	 bonds,	 elastic	 modulus,	 brittleness	 of	 gel	 and	
ability	to	self	heal	– i.e.	to	reform	interparticle	bonds	on	time	scales	smaller	than	
rheometric	time	scales	associated	with	bond	breakage.		All	of	these	issues	are	of	
profound	 importance	 in	 consolidation	 flows,	 where	 the	 same	 physiochemical	
processes	 are	 relevant	 but	with	 the	 added	 complication	 of	 strong	macroscopic	
hydrodynamic	flows	as	opposed	to	the	quiescent conditions	in	gels.

As	 we	 planned	 the	 simulations	 for	 the	 consolidation	 flows,	 the	 first	 step	 was	
verification	against	Bybee’s	results	 for	 the	quiescent	 systems.	 	The	second	step	
was	 verification	 against	 Amit	 Kumar’s	 results	 for	 rheological	 properties	 in
simple	 shear	 flows.	 	 For	 this	 latter	 test,	we	 also	 had	 access	 to	Qingjun	Meng’s	
results	 using	 the	 more	 expensive	 Particle	 Mesh	 Ewald	 Stokesian	 Dynamics	
algorithm.		As	we	were	planning	the	extension	to	the	consolidation	simulations,	
we	 began	 to	 considered	 possible	 limitations	 of	 the	 FLD	 approach	 when	 it	 is	
utilized	 for	 the	 consolidation	 flows	where	a	 linear	 flow	 field	with	 compression	
along	1,	2	or	3	axes	is	considered.	 	In	these	flows,	as	the	particles	are	forced	to	
higher	volume	fractions	by	moving	permeable	boundaries,	the	solvent	must	pass	
through	the	particle	suspension	similar	to	the	action	of	a	fluid	passing	through	a	
fixed	permeable	material.	 	It	is	well	known	that	these	flows	present	the	greatest	
challenge	for	FLD	(as	well	as	the	more	expensive	Stokesian	dynamics	approach).		
The	 great	 strength	 of	 the	 FLD	 (and	 Stokesian	 dynamics)	 algorithm	 is	 that	 it	
accurately	 calculates	 the	 strong	 lubrication	 forces	 which	 dominate	 in	 simple	
shear	 flows	 or	 in	 computation	 of	 particle	 diffusivity.	 	 In	 each	 case,	 there	 is	
significant	 relative	 particle	motion	 and	 strong	 lubrication	 forces.	 	 At	 the	 other	
extreme,	for	dilute	systems,	there	are	negligible	lubrication	interactions,	but	FLD	
is	 calibrated	 against	 accurate	 results	 (theoretical,	 experimental	 or	
computational)	 for particle	 mobility	 (or	 equivalently	 self-diffusivity).	 	 The	 far	
field	contributions	to	particle	mobility	are	the	result	of	a	long	range	average	over	
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many	particles	and	thus	are	insensitive	to	particle	microstructure.	 	 It	is	for	 this	
reason	that	we	are	able to	use	Monte	Carlo	configurations	for	calibration	and	yet	
still	achieve	excellent	accuracy	from	dilute	through	concentrated	suspensions	in	
both	diffusivity	and	rheology	simulations.		

Now	 consider	 flow	 through	 a	 fixed	 porous	medium	 composed	 of	 immobilized	
particles	in	a	suspension.		There	is	zero	relative	motion	of	the	particles	and	thus	
zero	lubrication	force.	 	There	 is	however	significant	fluid	motion	relative	to	the	
fixed	 particles,	 and	 the	 average	 particle	 resistance	 is	 characterized	 by	 the	
permeability	 of	 the	 medium.	 The	 permeability	 is	 a	 distinct	 material	 property	
which	 is	 not	 directly	 correlated	 with	 the	 particle	 mobility	 or	 self-diffusivity.		
Qualitatively	 permeability	 shows	 the	 same	 increasing	 or	 decreasing	 trend	 as	
particle	 mobility,	 but	 with	 different	 scaling	 and	 dependence	 on	 suspension	
volume	fraction	and	microstructure.		Most	notably,	particle	mobility	goes	to	zero	
at	 a	 finite	 volume	 fraction	 where	 the	 permeability	 retains	 a	 significant	 finite	
value.	Results	from	Stokesian	dynamics	(and	also	FLD)	give	a	factor	of	2	error	in	
estimating	the	permeability	for	a	suspension	of	fixed	spheres	at	volume	fraction	
50%	whereas	both	algorithms	do	a	good	job	for	predicting	the	particle	mobility	
(diffusivity)	and	excellent	job	predicting	the	shear	viscosity.

Next,	 consider	 a	 consolidation	 flow.	 	Here	 there	 is	 some relative	motion	of	 the	
particles	but	at	higher	degrees	of	compression,	the	flow	resistance	is	dominated	
more	 and	 more	 by	 the	 flow	 through	 the	 porous	 particle	 network,	 and	 the	
FLD/Stokesian	dynamics	 algorithms	 begin	 to	 lose	 their	 accuracy	 – and	 appeal.		
The	 problem	 is	 exacerbated	 if	 one	 is	 interested	 in	 predicting	 particle	
distributions	 for	 bidisperse	 suspensions	 often	 used	 for	 in	 high	 throughput	
processing	 for	 producing	 novel	 materials	 with	 different particle	 types	 with	
distinct	 physiochemical	 or	 electronic	 properties.	 	 If	 one	 particle	 species	 is	
distinctly	smaller,	 it	may	have	a	tendency	to	be	“washed”	out	of	the	medium	by	
the	departing	solvent.		The	degree	of	this	behavior	will	be	poorly	predicted	if	the	
permeability	is	poorly	computed	by	the	simulation.		This	is	a	significant	concern	
if	 unmodified	 FLD	 or	 Stokesian	 dynamics	 algorithms	 are	 used	 for	 these	
simulations.	 	Fortunately,	 there	is	a	straightforward	and	efficient	generalization	
of	FLD	which	addresses	these	concerns.		This	is	discussed	in	the	section	below.
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ANTICIPATED IMPACT

Based	on	the	successful	algorithmic	changes	introduced	in	this	project,	we	now	
have	 an	 efficient	 verified	 algorithm	 for	 conducting	 FLD	 simulations	 on	
multiprocessor	 workstations	 	 - a	 desirable	 platform	 for	 making	 this	 approach	
accessible	 to	 a	 broad	 range	 of	 researchers	 in	 industry	 and	 in	 academia.	 	 FLD	
simulations	 have	 proved	 their	 worth	 in	 studies	 of	 gel	 formation,	 diffusivity,	
microrheology	and	rheological	flows.		In	the	next	phase	of	our	research,	we	will	
continue	our	efforts	to	adapt	these	algorithms	for	application	to	processing	flows	
and	high	throughput	manufacturing.	

The	primary	new	features	to	be	addressed	 in	the	next	version	of	 the	algorithm	
are

 improved	accuracy	for	compressional	flows	in	consolidation	processing

 inclusion	of	permeability	solid	boundaries

 extension	to	bidisperse	suspensions

 inclusion	 of	 arbitrary	 boundary	 shapes	 and	 flow	 of	 suspensions	 in	
arbitrary	macroscopic	flow	fields

For	 compressional	 flows,	 we	 need	 to	 modify	 the	 FLD	 algorithm	 to	 make	 it	
accurate	 for	 flow	 in	 porous	 media,	 while	 retaining	 the	 accurate	 calculation	 of	
lubrication	 forces	 and	 the	 calibration	 for	 particle	 mobility.	 	 We	 have	 derived	
expressions	showing	that	this	may	be	accomplished	by	inclusion	of	a	third	term	
in	 the	 FLD	 resistance	 tensor.	 	 Briefly,	 the	 standard	 FLD	 approach	 includes	 an	
analytic	asymptotic	lubrication	term	and	a	block	diagonal	tensor	for	the	isotropic	
resistance	calibrated	to	the	mean	mobility	 tensor	of	 a	single	particle.	 	To	these	
terms	 we	 add	 a	 third	 contribution	 which	 captures	 the	 mean	 resistance	 of	 all	
particles	and	allows	calibration	to	experimental	or	computed	permeability	data.		
The	 inclusion	 of	 this	 third	 resistance	 component	 introduces	 negligible	
computation	 cost	 and	 preserves	 the	 accuracy	 of	 the	 lubrication	 and	 mobility	
terms.		While	the	analysis	is	complete	and	implementation	is	straightforward,	we	
have	not	yet	 completed	 implementation	and	verification	 for	 the	new	approach.		
This	is	the	next	step	in	our	efforts.

The	next	two	items	– solid	boundaries	and	bidisperse	suspension	involve	no	new	
concepts	 or	 theoretical	 formulations	 and	 versions	 have	 been	 previously	
implemented	by	members	of	our	research	group.		These	generalizations	need	to	
be	 included	 in	our	updates	algorithms.	 	The	 final	 generalization	– extension	 to	
include	 arbitrary	 macroscopic flows	 and	 boundaries	 is	 of	 high	 impact	 for	
simulations	 of	 processing	 flows	 and	 industrial	 applications.	 	 While	 several	
pathways	look	promising,	that	generalization	is	further	down	the	line.
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With	the	near	term	inclusion	of	the	first	three	extensions	– compressional	flows,	
solid	 boundaries	 and	 bidisperse	 suspensions,	 we	 will	 move	 our	 focus	 to	
conducting	 computational	 studies	 of	 the	 microstructure,	 particle	 distribution	
and	stress	distribution	in	materials	formed	through	consolidation	processing	of	a	
suspension	 	 - e.g.	 from	approximately	30%	volume	 fraction	 to	perhaps	55%	 to	
60%	volume	 fraction.	 	 	Much	 as	we	 found	 in	our	 studies	 of	 quiescent	 gels,	we	
expect	that	suspension	microstructure,	stress	chains	and	stress	distributions	will	
be	 highly	 dependent	 on	 processing	 conditions	 such	 as	 compression	 rate	 or	
compressive	 stress	 applied	 to	 suspension,	 interparticle	 forces	 and	 bidisperse	
particle	 size	 ratios	 and	 relative	 volume	 fractions.	 	 Brownian	 motion	 for	
submicron	 particles	 or	 sedimentation	 for	 larger	 particles	may	 also	play	 a	 role.		
The	 particle	 microstructure	 or	 heterogeneous	 stress	 distribution	 in	 the	
consolidated	material	is	of	great	significance	because	the	next	step	in	processing	
many	of	these	materials	is	a	drying	operation.		Non-uniformities	or	anomalies	in
microstructure	may	 develop	 into	 cracks	when	subject	 to	 large	 stresses	 arising	
from	interfacial	tension	at	the	moving	drying	front.	

Steven	Chen,	the	Sandia	Fellow	working	on	this	research	project	was	funded	by	
Sandia	 through	 June	 2014.	 	 After	 a	 period	 of reduced	 effort	 owing	 to	 personal	
circumstances,	 Steven	 will	 be	 returning	 to	 100%	 effort	 on	 this	 project	 in	
December	 2014.	 	We	 currently	 have	 funding	 for	 the	 next	 18	months	 (through	
unrestricted	 funding	 with	 Higdon’s	 endowed	 chair)	 which	 should	 see	 Steven	
through	to	the	conclusion	of	his	PhD.		We	hope	to	demonstrate	a	successful	effort	
in	 applying	 the	 new	 generalized	 FLD	 algorithms	 and	 in	 analyzing	 important	
features	 of	 consolidation	 flows	 and	 the	 resulting	 microstructure	 and	 material	
properties.	 	 At	 that	 time,	 we	 will	 approach	 Sandia	 National	 Labs	 concerning	
possible	follow-on	funding	for	this	project.

Based	 on	 discussions	 with	 colleagues	 at	 Sandia,	 we	 believe	 that	 the	 FLD	
computational	 algorithms	 have	 a	 bright	 future	 for	 continued	 evolution	 and	
application	to	important	processing	flows	of	interest	to	the	labs. Particular	areas	
of	 application	 include	 the	 processing	 and	 optimization	 of	 microstructure	 for	
power	 source	materials	 (i.e.	 batteries),	 energetic	 materials,	 and	 ceramic	 piece	
parts.	Manufacturing	processes	for	these	applications	involve	the	flow,	rheology	
and	 drying	 of	 colloidal	 suspensions.	 	 	 This	 computational	 approach	 looks	
particularly	 useful	 in	 analyzing	 the	 microstructure	 and	 microscale	 particle	
distribution	 arising	 in	 processes	 critical	 for	 high throughput	manufacturing	 of	
novel	materials.
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of	Energy’s	National	Nuclear	Security	Administration	under	Contract	DE-AC04-94AL85000.

Conclusion

This	 project	 has	 lead	 to	 significant	 advances	 in	 the	 versatile	 Fast	 Lubrication	
Dynamics	 (FLD)	 algorithm	 for	 simulation	 of	 concentrated	 suspensions	 in	 fluid	
flow	 fields.	 The	 underlying	 mathematical	 formulation	 has	 been	 clarified	 and	
adapted	 to	 facilitate	 alternative	 parallel	 implementations.	 It	 has	 yielded	
significant	 improvements	 in	 parallel	 efficiency	 in	 an	 OpenMP	 shared	 memory	
environment.	 	 Hitherto	 unforeseen	 challenges	 were	 identified	 in	 applying	 this	
approach	 or	 other	 competitive	 approaches	 (Stokesian	 dynamics)	 to	 certain	
realistic	processing	flows	involving	one	or	more	compressional	flow	axes.		Novel	
modifications	 to	 the	 computational	 approach	 have	 been	 developed	 to	 address	
these	challenges	and	are	currently	being	implemented	in	the	ongoing	pursuit	of	
this	project.		


